Double deficiency for RORγt and T-bet drives Th2-mediated allograft rejection in mice.
نویسندگان
چکیده
Although Th1, Th2, and Th17 cells are thought to be major effector cells in adaptive alloimmune responses, their respective contribution to allograft rejection remains unclear. To precisely address this, we used mice genetically modified for the Th1 and Th17 hallmark transcription factors T-bet and RORγt, respectively, which allowed us to study the alloreactive role of each subset in an experimental transplant setting. We found that in a fully mismatched heterotopic mouse heart transplantation model, T cells deficient for T-bet (prone to Th17 differentiation) versus RORγt (prone to Th1 differentiation) rejected allografts at a more accelerated rate, indicating a predominance of Th17- over Th1-driven alloimmunity. Importantly, T cells doubly deficient for both T-bet and RORγt differentiated into alloreactive GATA-3-expressing Th2 cells, which promptly induced allograft rejection characterized by a Th2-type intragraft expression profile and eosinophilic infiltration. Mechanistically, Th2-mediated allograft rejection was contingent on IL-4, as its neutralization significantly prolonged allograft survival by reducing intragraft expression of Th2 effector molecules and eosinophilic allograft infiltration. Moreover, under IL-4 neutralizing conditions, alloreactive double-deficient T cells upregulated Eomesodermin (Eomes) and IFN-γ, but not GATA-3. Thus, in the absence of T-bet and RORγt, Eomes may salvage Th1-mediated alloimmunity that underlies IL-4 neutralization-resistant allograft rejection. We summarize that, whereas Th17 cells predictably promote allograft rejection, IL-4-producing GATA-3(+) Th2 cells, which are generally thought to protect allogeneic transplants, may actually be potent facilitators of organ transplant rejection in the absence of T-bet and RORγt. Moreover, Eomes may rescue Th1-mediated allograft rejection in the absence of IL-4, T-bet, and RORγt.
منابع مشابه
A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy
T-bet plays a crucial role in Th1 development. We investigated the role of T-bet in the development of allograft rejection in an established MHC class II-mismatched (bm12 into B6) model of chronic allograft vasculopathy (CAV). Intriguingly, and in contrast to IFN-gamma(-/-) mice that are protected from CAV, T-bet(-/-) recipients develop markedly accelerated allograft rejection accompanied by ea...
متن کاملPrevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORγt in mice.
Allogeneic hematopoietic cell transplantation (HCT) is effective therapy for hematologic malignancies through T cell-mediated GVL effects. However, HCT benefits are frequently offset by the destructive GVHD, which is also induced by donor T cells. Naive Th can differentiate into Th1 and Th17 subsets and both can mediate GVHD after adoptive transfer into an allogeneic host. Here we tested the hy...
متن کاملDeletion of Smad3 improves cardiac allograft rejection in mice
T cells play a critical role in acute allograft rejection. TGF-β/Smad3 signaling is a key pathway in regulating T cell development. We report here that Smad3 is a key transcriptional factor of TGF-β signaling that differentially regulates T cell immune responses in a mouse model of cardiac allograft rejection in which donor hearts from BALB/c mice were transplanted into Smad3 knockout (KO) and ...
متن کاملInterleukin-9 stimulates the production of interleukin-5 in CD4+ T cells.
We recently showed that interleukin-9 (IL-9), a Th2 cytokine, promotes IL-5-mediated rejection of allografts in mice. This observation led us to investigate the functional link between IL-9 and IL-5 production during alloreactive T cell responses in vitro and in vivo. Firstly, we found that IL-9 was produced by alloreactive Th2 cells, and IL-9 mRNA was detected in skin allograft during Th2-type...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 191 8 شماره
صفحات -
تاریخ انتشار 2013